MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page			Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2012 9702		23	
1	(a)	disp mov	olace ved /	ment is a vector, distance is a scalar ment is straight line between two points / distance example showing difference ne of the definitions for the second mark)	is sum of lenç	B1 gths B1	[2]
	(b)	a body continues at rest or at constant velocity unless acted on by a resultant (external) force					[1]
	(c)	(i)	thes	th of T_1 and T_2 equals frictional force se two forces are in opposite directions fow for 1/2 for travelling in straight line hence no rot true)	ation / no resul	B1 B1 Itant	[2]
		(ii)	1.	scale vector triangle with correct orientation / vector orientation both with arrows scale given or mathematical analysis for tensions	triangle with cor	rrect B1 B1	[2]
			2.	$T_1 = 10.1 \times 10^3 (\pm 0.5 \times 10^3) \text{N}$ $T_2 = 16.4 \times 10^3 (\pm 0.5 \times 10^3) \text{N}$		A1 A1	[2]
2	(a)	weight = 452×9.81 component down the slope = $452 \times 9.81 \times \sin 14^{\circ}$ = $1072.7 = 1070 \text{ N}$				M1 A0	[1]
	(b)	(i)		ma (1070 + 525) = 452 × 0.13 1650 (1653.76)N any forces missing 1/3		C1 C1 A1	[3]
		(ii)	1.	$s = ut + \frac{1}{2}at^2$ hence $10 = 0 + \frac{1}{2} \times 0.13t^2$ $t = [(2 \times 10) / 0.13]^{1/2} = 12.4$ or 12s		C1 A1	[2]
			2.	$v = (0 + 2 \times 0.13 \times 10)^{1/2} = 1.61 \text{ or } 1.6 \text{ m s}^{-1}$		A1	[1]
	(c)	line line	dow less	line from the origin n to zero velocity in short time compared to stage 1 steep negative gradient ocity larger than final velocity in the first part – at least 2	2×	B1 B1 B1 B1	[4]
3	(a)	m = W = P =	h×, = V× = h× F / A hρg	$ \begin{array}{l} \rho \\ A \times \rho \times g \\ A \end{array} $		B1 B1 B1	
			, 0	portional to <i>h</i> if ρ is constant (and <i>g</i>)		B1	[4]
	(b)		-	changes with height ensity is not constant with link to formula		B1 B1	[2]

	Page 3	3	Mark Scheme: Teachers' version	Syllabus	Paper	Paper	
			GCE AS/A LEVEL – May/June 2012	ay/June 2012 9702		23	
4		ctric fi arge)	ield strength is the force <u>per unit positive</u> charge (ac	ting on a stationa	ary B1	[1]	
	(b) (i)	= 12	V / d 00 / 14 × 10 ^{−3} 57 × 10 ⁴ V m ^{−1}		C1 A1	[2]	
	(ii)	W = = 3.2	QV or $W = F \times d$ and therefore $W = E \times Q \times d$ 2 × 10 ⁻¹⁹ × 1200 34 × 10 ⁻¹⁶ J		C1 A1		
	(iii)	∆U = = 6.6			C1 A1	[2]	
	(iv)	ΔK =	$3.84 \times 10^{-16} - \Delta U$ $34 \times 10^{-16} J$		A1	[2] [1]	
	(v)	K = 1 v = [= 3.4	⁄₂mv² (2 × 3.8 × 10 ^{−16}) / 6.6 × 10 ^{−27}] ^{1/2} ↓ × 10 ⁵ m s ^{−1}		C1 A1	[2]	
5	(a) (i)	sum	of currents into a junction = sum of currents out of jun	ction	B1	[1]	
	(ii)	char	ge		B1	[1]	
	(b) (i)	20 –	ΣIR 12 = 2.0(0.6 + R) (not used 3 resistors 0/2) 3.4 Ω		C1 A1	[2]	
	(ii)	P = 1 = 20 = 40	× 2		C1 A1	[2]	
	(iii)	P = 1 P = ($(2)^2 \times (0.1 + 0.5 + 3.4)$		C1		
	(iv)		W ency = useful power / output power 40 = 0.6 or 12 × 2 / 20 × 2 or 60%		A1 C1 A1	[2] [2]	

	Page 4			Mark Scheme: Teachers' version	Syllabus	Pape	r
				GCE AS/A LEVEL – May/June 2012	9702	23	
6	(a)			action bending/spreading of light at edge/slit occurs at each slit		B1 B1	[2]
		(ii)	cons	stant phase difference between each of the waves		B1	[1]
	(iii)		(when the waves meet) the resultant displacement is the sum of the displacements of each wave			the B1	[1]
	(b)	n = ; n = ;	3.52	$n\lambda$ = 1 / 450 × 103 × 630 × 10 ⁻⁹ umber of orders = 3		C1 M1 A1	[3]
	(c)	mor	e ord	less than λ red lers seen er angle than for the equivalent red		M1 A1 A1	[3]
7	(a)	addi	ition	er reduces count rate hence α of 1 cm of aluminium causes little more count rate reliation is γ	duction hence	B1 only B1	[2]
	(b)	look	for a	c field perpendicular to direction of radiation a count rate in expected direction / area if there were no radiation present. If no count rate recorded then β not	• •	B1 B1	[2]